## **RESEARCH ARTICLE**

**OPEN ACCESS** 

## Design, Modeling, Application and Analysis of Bevel Gears

<sup>1</sup>Engr.Rufus Ogbuka Chime ,Mnse , Mnimeche, <sup>2</sup> Engr.Samuel I.Ukwuaba, Fnse Fnimeche, <sup>3</sup>Prof.Abdulrahim Abdulbaqi Toyin, Mnse, <sup>4</sup> Benjamin Ibe Chukwu Phd,Mird,Fiia

<sup>1</sup>Institute Of Management And Technology (IMT) Enugu, Enugu.State Nigeria <sup>2</sup>Petroleum Training Institute Effurun Delta State.Nigeria <sup>3</sup> Mnimeche University Of Maiduguri Maiduguri,Borno. <sup>4</sup>Department Of Management Faculty Of Business Administrationuniversity Of Nigeria Enugu Campus

## ABSTRACT

Computer technology has touched all areas of today's life, impacting how we obtain railway tickets, shop online and receive medical advice from remote location. Computer-based design analysis is nowadays a common activity in most development projects. Traditionally, the design field has been identified with particular end products, e.g., mechanical design, electrical design, ship design. In these fields, design work is largely based on specific techniques to foster certain product characteristics and principles The scope of this work includes, to design, to model the bevel gear, to select gear materials , to detailed factor safety in design and to analysis bevel gears. Gears are toothed elements that transmit rotary motion from one shaft to another. Gears are generally rugged and durable and their power transmission efficiency is as high as 98%. Gears are usually more costly than chains and belts. **Bevel gears** are gears where the axes of the two shafts intersect and the toothbearing faces of the gears themselves are conically shaped. Bevel gears are most often mounted on shafts that are 90 degrees apart, but can be designed to work at other angles as well. The pitch surface of bevel gears is a cone. Two bevel gears in mesh is known as bevel gearing. In bevel gearing, the pitch cone angles of the pinion and gear are to be determined from the shaft angle, i.e., the angle between the intersecting shafts. The bevel gear has many diverse applications such as locomotives, marine applications, automobiles, printing presses, cooling towers, power plants, steel plants, railway track inspection machines, etc.

### I. INTRODUCTION

The history of gears is probably as old as civilization itself. Still today, the importance of gears in the manufacturing industry is undiminished and even continues to grow.Gears are considered as one of the oldest piece of equipment known to mankind, so old in fact that their origin can be trace back to The Chinese South-Pointing Chariot in the 27th century B.C - a vehicle built on two wheels which bore a movable indicator that always pointed South no matter how the chariot turned. The chariot, allegedly designed by mechanical engin Ma Jun, possessed rotating wheels that were mechanically geared to keep the indicator pointing in a southern direction without the use of magnets. The earliest description of gears was written in the 4th century B.C. by Aristotle. He wrote that the "direction of rotation is reversed one gear wheel drives another gear wheel. In the 3rd century B.C., various Greek Inventors used gear in water wheels and clocks, and sketches of various types of gears of around this time were found in Leonardo da Vinci's notebooks on. For a long period after these discoveries, there were no major development concerning wheels until the 17th century, when the first attempts to provide

velocity ratios constant (conjugate profiles) was recorded and there was mention of the utilization of the involute curve. The 19th century saw the first use of form cutters and rotating cutters and in 1835 English inventor Whitworth patented the first gear hobbing process. Various other patents followed until 1897 when Herman Pfauter of Germany invented the first hobbing machine capable of cutting both spur and helical gears. Through the 20th century various types of machines developed. But, the next major step came 1975 when the Pfauter Company in Germany introduced the first NC hobbing machine and in 1982 the Full 6 axis machine was introduced. The purpose of any gear mesh is to transmit rotary motion and torque from one location to another at a consistent rate.see fig 4 Simulation is a powerful approach to modeling manufacturing systems in that many complex and diverse systems can be represented. Can predict system performance measures that are difficult to assess without a model. It is a proven, successful tool and has been in use since the 1950s. The current languages take advantage of the capabilities of today's microprocessors and provide the user with the needed on-line support for model

development, management, and analysis . CAD (computer-aided design) has its roots in interactive computer graphics. Before the CAD era, engineering drawings were prepared manually on paper using pencils and drafting instruments on a drafting table. The advent of interactive computer graphics replaced the drafting table with a computer monitor and the pencil with an input device such as a light pen or mouse. Instead of using physical drafting instruments, software commands and icons on the computer display are used. The drawing can be created, modified, copied, and transformed using the software tools. At the time.CAD stood for computer-aided drafting. Drafting was confined to 2D because of the paper limitation. With the computer, such limitation is removed. Three-dimensional CAD systems were developed in the 1960s. In 3D CAD, objects are modeled using 3D coordinates (x, y, and z) instead of 2D coordinates (x and y). The need for modeling parts and products with complex surfaces motivated the development of free-form surface modelers. Bevel gears are used in differential drives, which can transmit power to two axles spinning at different speeds, such as those on a cornering automobile.

The gears in a bevel gear planer permit minor adjustment during assembly and allow for some displacement due to deflection under operating loads without concentrating the load on the end of the tooth.

Spiral bevel gears are important components on rotorcraft drive systems. These components are required to operate at high speeds, high loads, and for a large number of load cycles. In this application, spiral bevel gears are used to redirect the shaft from the horizontal gas turbine engine to the vertical rotor.

## II. GEAR DESIGNCONSIDERATIONS

Bevel and hypoid gears are suitable for transmitting power between shafts at practically any angle and speed. The load, speed, and special operating conditions must be defined as the first step in designing a gear set for a specific application. A basic load and a suitable factor encompassing protection from intermittent overloads, desired life, and safety are determined from

**[1.]** The power rating of the prime mover, its overload potential, and the uniformity

- of its output torque
- **[2.]** The normal output loading, peak loads and their duration, and the possibility of
- stalling or severe loading at infrequent intervals
- [3.] Inertia loads arising from acceleration or deceleration

The speed or speeds at which a gear set will operate must be known to determine inertia loads, velocity factor, type of gear required, accuracy requirements, design of mountings, and the type of lubrication. Special operating conditions include

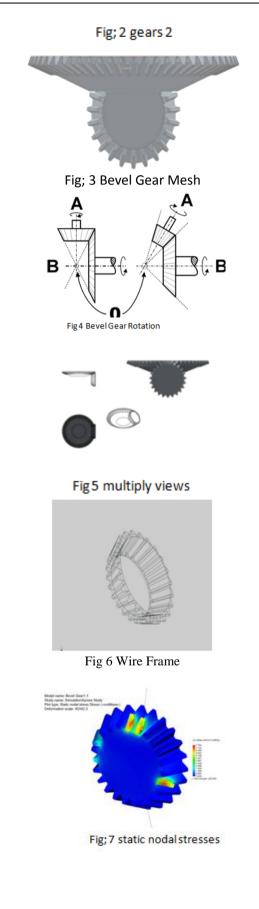
- [1.] Noise-level limitations
- [2.] High ambient temperature
- **[3.]** Presence of corrosive elements
- [4.] Abnormal dust or abrasive atmosphere
- [5.] Extreme, repetitive shock loading or reversing
- [6]. Operating under variable alignment
- [7.] Gearing exposed to weather
- [8.] Other conditions that may affect the operation of the set

## III. SELECTION OF TYPE OF GEAR

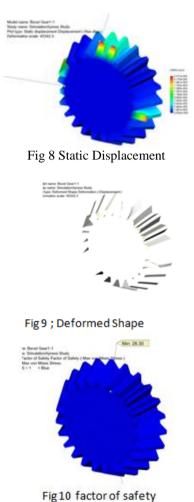
Straight-bevel gears are recommended for peripheral speeds up to 1000 feet per minute (ft/min) where maximum smoothness and quietness are not of prime importance. However, ground straight bevels have been successfully used at speeds up to 15 000 ft/min. Plain bearings may be used for radial and axial loads and usually result in a more compact and less expensive design. Since straight-bevel gears are the simplest to calculate, set up, and develop, they are ideal for small lots. Spiral-bevel gears are recommended where peripheral speeds are in excess of 1000 ft/min or 1000 revolutions per minute (r/min). Motion is transmitted more smoothly and quietly than with straight-bevel gears. So spiral-bevel gears are preferred also for some lower-speed applications. Spiral bevels have greater load sharing, resulting from more than one tooth being in contact. Zerol bevel gears have little axial thrust as compared to spiral-bevel gears and can be used in place of straight-bevel gears. The same qualities as defined under straight bevels apply to Zerol bevels. Because Zerol bevel gears are manufactured on the same equipment as spiral-bevel gears, Zerol bevel gears are preferred by some, They are more easily ground because of the availability of bevel grinding equipment. Hypoid gears are recommended where peripheral speeds are in excess of 1000 ft/min and the ultimate in smoothness and quietness is required. They are somewhat stronger than spiral bevels. Hypoids have lengthwise sliding action, which enhances the lapping operation but makes them slightly less efficient than spiral-bevel gears.

## IV. MATERIALS USED IN GEAR MANUFACTURING PROCESS

The various materials used for gears include a wide variety of cast irons, non ferrous material and non – metallic materials. The selection of the gear material depends upon: Type of service


Peripheral speed Degree of accuracy required Method of manufacture Required dimensions and weight of the drive Allowable stress Shock resistance Wear resistance. Some materials chosen include: Cast iron, which is popular due to its good wearing properties, excellent machinability and ease of producing complicated shapes by the casting method. It is suitable where large gears of complicated shapes are needed. Steel, which is sufficiently strong & highly resistant to wear by abrasion. Cast steel, which is used where stress on the gear is high and it is difficult to fabricate the gears. Plain carbon steels, which find application for industrial gears where high toughness combined with high strength. Alloy steels, which are used where high tooth strength and low tooth wear are required. Aluminum, which is used where low inertia of rotating mass is desired. Gears made of non-metallic materials give noiseless operation at high peripheral speeds.

# V. APPLYING COMPUTERS TO DESIGN


No other idea or device has impacted engineering as computer have. All engineering disciplines routinely use computer for calculation, analysis, design and simulation .Many of the individual tasks within the overall design process can be performed using a computer. As each of these tasks is made more efficient, the efficiency of the overall process increases as well. The computer is especially well suited to design in four areas, which correspond to the latter four stages of the general design process. Computers function in the design process through geometric modeling capabilities, engineering analysis calculations, automated testing procedures, and automated d

## VI. DESIGN AND MODELING OF BEVEL GEAR





www.ijera.com



#### ing to indetor of bareet

## VII. DESIGN PROCESS

The ability to create something out of nothing makes design one of the most exciting aspects of engineering. To be successful, design engineer require abroad set of talents include knowledge creativity, people skill and planning ability .Engineers use CAD to create two- and three-dimensional drawings, such as those for automobile and airplane parts, floor plans, and maps and machine assembly. While it may be faster for an engineer to create an initial drawing by hand, it is much more efficient to change and adjust drawings by computer. In the design stage, drafting and computer graphics techniques are combined to produce models of different machines. Using a computer to perform the six-step'art-to-part' process: The first two steps in this process are the use of sketching software to capture the initial design ideas and to produce accurate engineering drawings. The third step is rendering an accurate image of what the part will look like. Next, engineers use analysis software to ensure that the part is strong enough .Step five is the production

of a prototype, or model CAD began as an electronic drafting board, a replacement of the traditional paper and pencil drafting method. Over the years it has evolved into a sophisticated surface and solid modeling tool. Not only can products be represented precisely as solid models, factory shop floors can also be modeled and simulated in 3D shown in fig 7-10. It is an indispensable tool to modern engineers

#### VIII. MODELLING

Modeling is the process of producing a model; a model is a representation of the construction and working of some system of interest as shown in fig 3. A model is similar to but simpler than the system it represents. One purpose of a model is to enable the analyst to predict the effect of changes to the system. On the one hand, a model should be a close approximation to the real system and incorporate most of its salient features. On the other hand, it should not be so complex that it is impossible to understand and experiment with it. A good model is a judicious tradeoff between realism and simplicity. Simulation practitioners recommend increasing the complexity of a model iteratively. An important issue in modeling is model validity. Model validation techniques include simulating the model under known input conditions and comparing model output with system output. Generally, a model intended for a simulation study is a mathematical model developed with the help of simulation software. Mathematical model classifications include deterministic (input and output variables are fixed values) or stochastic (at least one of the input or output variables is probabilistic); static (time is not taken into account) or dynamic (time-varying interactions among variables are taken into account). Typically, simulation models are stochastic and dynamic

Wire Frame The most basic functions of CAD are the 2D drafting functions. 2D geometry such as line, circles, and curves can be defined. A 2D profile can also be extruded into a 21/2 D object. The extruded object is a wireframe of the object CAD also allows a 3D wire-frame to be defined. To cover the wire-frame model, faces can be added to the model. This creates a shell of the object. Hidden line/surface algorithms can be applied to create realistic pictures. Many menu functions are used to help simplify the design process. Annotation and dimensioning are also supported. Text and dimension symbols can be placed anywhere on the drawing, at any angle, and at any size.A sample drawing is shown in Fig; 6

**Experimental Analysis** involves fabricating a prototype and subjecting it to various experimental methods. Although this usually takes place in the later stages of design, CAD systems enable the designer to make more effective use of experimental data, especially where analytical methods are thought to be unreliable for the given model. CAD also provides a useful platform for incorporating experimental results into the design

#### Bevel Gears Component Generator

file:///C:/Users/ROMCHI~1/AppData/Local/Temp/DA/GEAR2/GEAR2.htm Bevel Gears Component Generator (Version: 12.0 (Build 120254000, 254))

#### 12/6/2015

Project Info

#### ⊟ Guide

Unit Corrections Guide - Complex Proposal

Type of Load Calculation - Torque calculation for the specified power and speed Type of Strength Calculation - Check Calculation

## Method of Strength Calculation - According to ISO

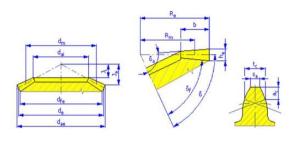
#### Common Parameters

| Gear Ratio                            | 1.          | 2.4783 ul   |
|---------------------------------------|-------------|-------------|
| Tangential Module                     | met         | 3.000 mm    |
| Helix Angle                           | Ŗ           | 15.0000 deg |
| Tangential Pressure Angle             | Ct.         | 20.0000 deg |
| Shaft Angle                           | Ķ           | 90.0000 deg |
| Normal Pressure Angle at End          | <b>G</b> ne | 19.5015 deg |
| Normal Pressure Angle in Middle Plane | anm         | 19.3701 deg |
| Base Helix Angle                      | ₽6          | 14.1327 deg |
| Helix Angle at End                    | ₿e          | 13.3411 deg |
| Module                                | m           | 2.919 mm    |
| Contact Ratio                         | ε           | 2.2081 ul   |
| Transverse Contact Ratio              | εa          | 1.6660 ul   |
| Overlap Ratio                         | ER          | 0.5421 ul   |
| Limit Deviation of Axis Parallelity   | fx          | 0.0110 mm   |
| Limit Deviation of Axis Parallelity   | fy          | 0.0055 mm   |
| Virtual Gear Ratio                    | iy.         | 6.142 cm    |
| Virtual Center Distance               | av          | 253.883 mm  |
| Pitch Cone Radius                     | Re          | 92.198 mm   |
| Pitch Cone Radius in Middle Plane     | Rm          | 82.198 mm   |
| Whole Depth of Tooth                  | he          | 6.600 mm    |

#### 🗆 Gears

|                                |    | Gear 1    | Gear 2     |
|--------------------------------|----|-----------|------------|
| Type of model                  |    | Component | Component  |
| Number of Teeth                | N  | 23 ul     | 57 ul      |
| Unit Correction                | х  | 0.3314 ul | -0.3314 ul |
| Tangential Displacement        | xt | 0.0298 ul | -0.0298 ul |
| Pitch Diameter at End          | de | 69.000 mm | 171.000 mm |
| Pitch Diameter in Middle Plane | dm | 61.516 mm | 152.453 mm |




#### Current View of Bevel Gears

#### Bevel Gears Component Generator

#### file:///C:/Users/ROMCHI~1/AppData/Local/Temp/DA/GEAR2/GEAR2.htm

| Outside Diameter in Middle Plane | dae             | 76.408 mm   | 172.501 mm  |
|----------------------------------|-----------------|-------------|-------------|
| Outside Diameter at Small End    | dai             | 59.833 mm   | 135.081 mm  |
| Root Diameter at End             | dre             | 64.167 mm   | 167.562 mm  |
| Vertex Distance                  | Ae              | 84.005 mm   | 32.640 mm   |
| Vertex Distance at Small End     | A               | 65.783 mm   | 25.560 mm   |
| Pitch Cone Radius                | ð               | 21.9745 deg | 68.0255 deg |
| Outside Cone Radius              | δa              | 24.4552 deg | 69.2717 deg |
| Root Cone Radius                 | ōŗ              | 20.3557 deg | 65.1728 deg |
| Facewidth                        | b               | 20.00       | 0 mm        |
| Facewidth Ratio                  | b <sub>r</sub>  | 0.21        | 69 ul       |
| Addendum                         | a*              | 1.0000 ul   | 1.0000 ul   |
| Clearance                        | C*              | 0.2000 ul   | 0.2000 ul   |
| Root Fillet                      | $\eta^{*}$      | 0.3000 ul   | 0.3000 ul   |
| Tooth Thickness at End           | Se.             | 5.526 mm    | 3.899 mm    |
| Chordal Thickness                | te              | 4.879 mm    | 3.443 mm    |
| Chordal Addendum                 | ac              | 3.106 mm    | 1.379 mm    |
| Limit Deviation of Helix Angle   | FR              | 0.0110 mm   | 0.0110 mm   |
| Limit Orcumferential Run-out     | Fr              | 0.0210 mm   | 0.0280 mm   |
| Limit Deviation of Axial Pitch   | fpt             | 0.0085 mm   | 0.0090 mm   |
| Limit Deviation of Basic Pitch   | fpb             | 0.0080 mm   | 0.0085 mm   |
| Equivalent Number of Teeth       | Ne              | 24.802 ul   | 152.327 ul  |
| Equivalent Pitch Diameter        | d,              | 66.335 mm   | 407.417 mm  |
| Equivalent Outside Diameter      | d <sub>va</sub> | 73.458 mm   | 410.993 mm  |
| Equivalent Base Circle Diameter  | dyb             | 62.335 mm   | 382.847 mm  |
| Virtual Number of Teeth          | N <sub>r</sub>  | 27.520 ul   | 169.023 ul  |
| Virtual Pitch Diameter           | dn              | 71.098 mm   | 438.668 mm  |
| Virtual Outside Diameter         | dan             | 78.220 mm   | 440.244 mm  |
| Virtual Base Circle Diameter     | don             | 66.810 mm   | 410.334 mm  |
| Unit Correction without Tapering | X2              | 0.3117 ul   | -3.4395 ul  |
| Unit Correction without Undercut | Xp              | -0.5111 ul  | -8.2940 ul  |
| Unit Correction Allowed Undercut | Xd              | -0.6782 ul  | -8.4611 ul  |
| Addendum Truncation              | k               | 0.0000 ul   | 0.0000 ul   |
| Unit Outside Tooth Thickness     | Sa              | 0.6548 ul   | 0.8267 ul   |





#### ⊟ Loads

|                            |                 | Gear 1        | Gear 2     |  |
|----------------------------|-----------------|---------------|------------|--|
| Power                      | Р               | 1.000 kW      | 0.980 kW   |  |
| Speed                      | n               | 1000.00 rpm   | 403.51 rpm |  |
| Torque                     | Т               | 9.549 N m     | 23.192 N m |  |
| Efficiency                 | ŝ               | 0.980         | ul         |  |
| Tangential Force           | F,              | 310.46        | 5 N        |  |
| Normal Force               | Fn              | 340.702 N     |            |  |
| Radial Force (direction 1) | Fr1             | 73.662 N      | 119.429 N  |  |
| Radial Force (direction 2) | Fr2             | 135.919 N     | -34.861 N  |  |
| Axial Force (direction 1)  | Fat             | 119.429 N     | 73.662 N   |  |
| Axial Force (direction 2)  | Fa2             | -34.861 N     | 135.919 N  |  |
| Circumferential Speed      | v               | 3.221         | mps        |  |
| Resonance Speed            | n <sub>E1</sub> | 17825.801 rpm |            |  |

#### Material

|                                       |                   | Gear 1                  | Gear 2        |
|---------------------------------------|-------------------|-------------------------|---------------|
| -                                     |                   | Grey cast iron class 40 | User material |
| Ultimate Tensile Strength             | Su                | 250 MPa                 | 700 MPa       |
| Yield Strength                        | Sy                | 125 MPa                 | 340 MPa       |
| Modulus of Elasticity                 | E                 | 105000 MPa              | 206000 MPa    |
| Poisson's Ratio                       | Ū                 | 0.250 ul                | 0.300 ul      |
| Endurance Limit                       | Sn                | 212.0 MPa               | 420.0 MPa     |
| Surface Fatigue Strength              | Ste               | 360.0 MPa               | 1020.0 MPa    |
| Bending Fatigue Limit                 | σFlim             | 105.0 MPa               | 352.0 MPa     |
| Contact Fatigue Limit                 | σ <sub>Hlim</sub> | 350.0 MPa               | 1140.0 MPa    |
| Hardness in Tooth Core                | JHV               | 210 ul                  | 210 ul        |
| Hardness in Tooth Side                | VHV               | 600 ul                  | 600 ul        |
| Base Number of Load Cycles in Bending | NFlim             | 3000000 ul              | 3000000 ul    |
| Base Number of Load Cycles in Contact | NHIIm             | 5000000 ul              | 10000000 ul   |
| Wöhler Ourve Exponent for Bending     | qF                | 6.0 ul                  | 6.0 ul        |

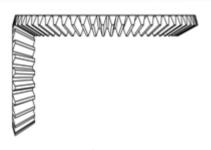
| Wöhler Ourve Exponent for Contact | qн              | 10.0 ul  | 10.0 ul   |
|-----------------------------------|-----------------|----------|-----------|
| Type of Treatment                 | type 0 ul       |          | 2 ul      |
| Allowable Bending Stress          | σ <sub>Ab</sub> | 53.0 MPa | 105.0 MPa |
| Allowable Contact Stress          | σAc             | 12.0 MPa | 34.0 MPa  |

## Strength Calculation

## E Factors of Additional Load

| Application Factor          | Ka              | 1.20     | 0 ul     |  |
|-----------------------------|-----------------|----------|----------|--|
| Dynamic Factor              | K <sub>HV</sub> | 1.106 ul | 1.106 ul |  |
| Face Load Factor            | K <sub>HŖ</sub> | 1.534 ul | 1.345 ul |  |
| Transverse Load Factor      | K <sub>Ha</sub> | 1.704 ul | 1.704 ul |  |
| One-time Overloading Factor | Kas             | 1.000 ul |          |  |

## E Factors for Contact


| Basticity Factor                 | ZE | 154.436 ul |          |  |
|----------------------------------|----|------------|----------|--|
| Zone Factor                      | ZH | 2.457 ul   |          |  |
| Contact Ratio Factor             | Zε | 0.804 ul   |          |  |
| Bevel Gear Factor                | Zk | 0.850 ul   |          |  |
| Single Pair Tooth Contact Factor | ZB | 1.000 ul   | 1.000 ul |  |
| Life Factor                      | ZN | 1.000 ul   | 1.000 ul |  |
| Lubricant Factor                 | ZL | 0.937 ul   |          |  |
| Roughness Factor                 | ZR | 1.000 ul   |          |  |
| Speed Factor                     | Zv | 0.942 ul   |          |  |
| Helix Angle Factor               | ZŖ | 0.983 ul   |          |  |
| Size Factor                      | Zχ | 1.000 ul   | 1.000 ul |  |



Bottom view

#### E Factors for Bending

| Form Factor                        | YFA              | 1.643 ul | 1.304 ul |
|------------------------------------|------------------|----------|----------|
| Stress Correction Factor           | Y <sub>Sa</sub>  | 1.839 ul | 1.175 ul |
| Teeth with Grinding Notches Factor | Y <sub>Sag</sub> | 1.000 ul | 1.000 ul |
| Helix Angle Factor                 | YŖ               | 0.932 ul |          |
| Contact Ratio Factor               | YE               | 0.673 ul |          |
| Bevel Gear Factor                  | Yk               | 1.000 ul |          |
| Alternating Load Factor            | YA               | 1.000 ul | 1.000 ul |
| Production Technology Factor       | YT               | 1.000 ul | 1.000 ul |
| Life Factor                        | YN               | 1.000 ul | 1.000 ul |
| Notch Sensitivity Factor           | Yδ               | 1.819 ul | 1.212 ul |
| Size Factor                        | Υχ               | 1.000 ul | 1.000 ul |
| Tooth Root Surface Factor          | YR               | 1.00     | lu 0(    |



## Left view

#### E Results

| Check Calculation                    |      | Pos      | itive    |
|--------------------------------------|------|----------|----------|
| Static Safety in Bending             | SFst | 7.572 ul | 50.056 u |
| Static Safety in Contact             | SHst | 1.362 ul | 3.704 ul |
| Factor of Safety from Tooth Breakage | SF   | 5.510 ul | 24.270 u |
| Factor of Safety from Pitting        | SH   | 1.202 ul | 3.915 ul |

8:02:34 PM Design: Calculation indicates design compliance!

□ Summary of Messages



**Right View** 

www.ijera.com

**Safety** An engineer must always design products that are safe for the end user and the artisans who construct the product.it is impossible to design completely safe products because they would be too costly. Therefore, the engineer often must design to industry standards for similar product

Factor Of Safety is the ratio of ultimate strength of the material to allowable stress. The term was originated for determining allowable stress. The ultimate strength of a given material divided by an arbitrary factor of safety, dependent on material and the use to which it is to be put, gives the allowable stress. In present design practice, it is customary to use allowable stress as specified by recognized authorities or building codes rather than an arbitrary factor of safety. One reason for this is that the factor of safety is misleading, in that it implies a greater degree of safety than actually exists. For example, a factor of safety of 4 does not mean that a member can carry a load four times as great as that for which it was designed. It also should be clearly understood that, though each part of a machine is designed with the same factor of safety, the machine as a whole does not have that factor of safety. When one part is stressed beyond the proportional limit, or particularly the yield point, the load or stress distribution may be completely changed throughout the entire machine or structure, and its ability to function thus may be changed, even though no part has ruptured. Although no definite rules can be given, if a factor of safety is to be used, the following circumstances should be taken into account in its selection:

- 1. When the ultimate strength of the material is known within narrow limits, as for structural steel for which tests of samples have been made, when the load is entirely a steady one of a known amount and there is no reason to fear the deterioration of the metal by corrosion, the lowest factor that should be adopted is 3.
- **2.** When the circumstances of (1) are modified by a portion of the load being variable, as in floors of warehouses, the factor should not be less than 4.
- **3.** When the whole load, or nearly the whole, is likely to be alternately put on and taken off, as in suspension rods of floors of bridges, the factor should be 5 or 6.
- **4.** When the stresses are reversed in direction from tension to compression, as in some bridge diagonalsand parts of machines, the factor should be not less than 6.
- 5. When the piece is subjected to repeated shocks, the factor should be not less than 10.
- **6**. When the piece is subjected to deterioration from corrosion, the section should be sufficiently

Increased to allow for a definite amount of corrosion before the piece is so far weakened by it as to require removal.

- 7. When the strength of the material or the amount of the load or both are uncertain, the factor should be increased by an allowance sufficient to cover the amount of the uncertainty.
- **8.** When the strains are complex and of uncertain amount, such as those in the crankshaft of a reversing engine, a very high factor is necessary, possibly even as high as 40.
- **9.** If the property loss caused by failure of the part may be large or if loss of life may result,

as in a derrick hoisting materials over a crowded street, the factor should be large.

## IX. CONCLUSION

CAD combines the characteristic of designer and computer that are best applicable made CAD such as popular design tool. CAD Has allowed the designer to bypass much of the Manuel drafting and analysis. Simulation tools enable us to be creative and to quickly test new ideas that would be much more difficult, time-consuming, and expensive to test in the lab. (Jeffrey D. Wilson, Nasa Glenn Research Center) It also help us reduce cost and time-to-market by testing our designs on the computer rather than in the field. Many of the individual tasks within the overall design process can be performed using a computer. As each of these tasks is made more efficient, the efficiency of the overall process increases as well. The computer is well suited to design in four areas, which correspond to the latter four stages of the general design process; Computers function in the design process through geometric modeling capabilities, analysis calculations, engineering testing procedures, and automated drafting, From the result of the testing and the affordability in terms of cost, it can be concluded that the project is successful. Therefore software design should be encouraged in our institution of higher learning base on the following facts, long product development, countless trial and error, and accountability and limited profitability

#### REFERENCE

- [1]. Dan B. Marghitu (2001)Mechanical Engineer'sHandbook published by Academic Press
- [2]. Frank C. Uherek(2013)Gear Material Selection and Construction for Large Gears introduction to gears (2006) kohara gears Industry Co. LTD
- [3]. bevel gear-wikipedia,the free encyclopedia

- [4]. Childs,, T.H.C.; Maekawa, K.; Obikawa, T.; Yamane, Y. "Metal Machining -Theory and Applications", Elsevier Dec 7, 200, ISBN 0-340-69159-X
- [5]. Holubář, P., Šíma, M., Zindulka, O., Technologie Úpravy Nástrojů Před Povlakováním, MM průmyslové spektrum, č. 9
- [6]. OBERG, Erik; Jones, Franklin D.; Horton, Holbrook L,Ryffel, Henry H., Machinery's Handbook (87thEdition) & Guide to Machinery's Handbook, Industrial Press, Sep 19, 2005
- [7]. Zetek, M.; Škarda, J.; Kříž, A.; Sosnová, M.; Hájek, J.; Podaný, P. New Types Of Thin
- [8]. Layers And new trends in PVD technologies. In ICPM 2005. Wien : Abteilung Austauschbau und
- [9]. Messtechnik, 2005. s. 337-343. ISBN 3-901-888-31-4
- [10]. Law, A. M., and M. G. McComas. 1991. Secrets of Successful Simulation Studies, Proceedings of the1991 Winter Simul ation Conference, ed. J. M.Charnes, D. M. Morrice, D. T. Brunner, and J. J.Swain, 21–27. Institute of Electrical and Electroni cs Engineers, Piscataway, New Jersey
- [11]. Mechanical Engineers' Handbook, 2nd ed., Edited By Kutz.
- [12]. Ashok Kumar Gupta Dr.Vandana Somkuwar (2014) Spiral Gevel Gear And Development Generation And Simulation Of Meshing And Tooth Contact Analysis (Tca)
- [13]. Mark T.Holtzapple W.Dan Reece "Fundamental of Engineering"Taxas A&M University
- [14]. Industrial Engineering handBook fifth Edition Edited by KJELL B. zandian cosponsores by JMA,INC.
- [15]. Koya O.A and Faborode M.O(2005) Mathematic al modeling of palm fruit cracking based on Hertzs Theory Biosyst ems Engineering, Vol.91 No.4 pp 471-7
- [16]. Tugrul Özel and Taylan Altan(1998)Modeling Of High Speed Machining Processes For Predicting Tool Forces, And Temperatures Using Fem Simulations
- [17]. www.digitalengineeringlibrary.com
- [18]. http://www.smihq.org/public/publications/s pringsmag08\_07a.html
- [19]. http://www.allrite.com/history-of-springcompression-extension-torsion
- [20]. [20]http/,centuryspring.com/pdfs/12-228compressionpdf

- [21]. Engr. Rufus O. Chime,Engr.Samuel .Ukwuaba,Engr.Engr. Ukwu Nwachukwu Design Modelling and Simulation of a Screw press Expeller for palm kernel oil extraction [International Engineering Conference, Exhibition and Annual General meeting] NSE Proceedings, 2013
- [22]. http://www.en.wikipedia.org
- [23]. Banks, J. 1994. Simulation software, paper presented as 1994 Winter Simulation Conference, Atlanta.
- [24]. Banks, J., Burnette, B., Rose, J.D., and H. Kozloski. 1995. Siman V and Cinema V, John Wiley & Sons, New York.
- [25]. Cox, S.W. 1992. Simulation Studio<sup>™</sup>, in Proceedings of the 1992 Winter Simulation Conference, J. J.
- [26]. Swain, D. Goldman, R.C. Crain, and J.R. Wilson, Eds., Association for Computing Machinery, New York, 347–351.
- [27]. Glavach, M.A. and Sturrock, D.T. 1993. Introduction to Siman/Cinema, in Proceedings of the 1993
- [28]. Winter Simulation Conference, G.W. Evans, M. Mollaghasemi, E.C. Russell, and W.E. Biles, Eds., Association for Computing Machinery, New York, 190– 192.